首页> 外文OA文献 >Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms
【2h】

Recombination operators and selection strategies for evolutionary Markov Chain Monte Carlo algorithms

机译:进化马尔可夫链蒙特卡罗算法的重组算子和选择策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Markov Chain Monte Carlo (MCMC) methods are often used to sample from intractable target distributions. Some MCMC variants aim to improve the performance by running a population of MCMC chains. In this paper, we investigate the use of techniques from Evolutionary Computation (EC) to design population-based MCMC algorithms that exchange useful information between the individual chains. We investigate how one can ensure that the resulting class of algorithms, called Evolutionary MCMC (EMCMC), samples from the target distribution as expected from any MCMC algorithm. We analytically and experimentally show—using examples from discrete search spaces—that the proposed EMCMCs can outperform standard MCMCs by exploiting common partial structures between the more likely individual states. The MCMC chains in the population interact through recombination and selection. We analyze the required properties of recombination operators and acceptance (or selection) rules in EMCMCs. An important issue is how to preserve the detailed balance property which is a sufficient condition for an irreducible and aperiodic EMCMC to converge to a given target distribution. Transferring EC techniques to population-based MCMCs should be done with care. For instance, we prove that EMCMC algorithms with an elitist acceptance rule do not sample the target distribution correctly.
机译:马尔可夫链蒙特卡罗(MCMC)方法通常用于从难处理的目标分布中采样。一些MCMC变体旨在通过运行大量MCMC链来提高性能。在本文中,我们调查了进化计算(EC)技术的使用,以设计基于种群的MCMC算法,该算法在各个链之间交换有用的信息。我们研究如何确保所生成的一类算法(称为进化MCMC(EMCMC))从目标分布中进行采样,这是任何MCMC算法所期望的。我们使用离散搜索空间中的示例,通过分析和实验表明,通过利用更可能的单个状态之间的公共部分结构,建议的EMCMC可以胜过标准MCMC。种群中的MCMC链通过重组和选择相互作用。我们分析了EMCMC中重组运算符和接受(或选择)规则的必需属性。一个重要的问题是如何保留详细的余额属性,这是不可还原且非周期性的EMCMC收敛到给定目标分布的充分条件。将EC技术转移到基于人群的MCMC时应格外小心。例如,我们证明具有精英接受规则的EMCMC算法不能正确采样目标分布。

著录项

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号